可注射的殼聚糖玻尿酸水凝膠用于軟骨組織工程
在中老年群體中軟骨損傷是導致殘疾的主要原因。當前使用細胞和生物材料替換受損組織的組織工程方法正發展為新的治療方式。蕞近美國加州大學洛杉磯分校生物工程學系的Min Lee教授團隊在可見光下通過與核黃素(RF)光引發劑相結合的光交聯法創造了一個含有甲基丙烯酸酯乙二醇殼聚糖(MeGC)和玻尿酸(HA)的可注射性水凝膠。
包含玻尿酸(HA)的可注射殼聚糖復合水凝膠適用于軟骨缺陷的修復。這種復合水凝膠是在交聯之前將HA溶解在光交聯殼聚糖溶液中,包含有高分子量HA的交聯殼聚糖形成了一個半貫穿的網絡。研究者對于含有和不含有HA的各種引發濃度和輻照時間的殼聚糖水凝膠的凝膠形態和時間、其與細胞的相容性、機械強度和降解情況都做了相應的評估。此外還評估了軟骨細胞的增殖和細胞外基質的沉積情況。
研究者首先用光聚合制備了殼多糖以及丙烯酸甲酯醇殼聚糖(MeGC)/HA水凝膠并對其進行表征。甲基丙烯酸酯基團在乙二醇殼聚糖上的取代度可通過MeGC的核磁共振氫譜計算而得到(Fig 1)。
Fig. 1.1 H NMR spectra of MeGC?(400 MHz, D 2 O).
通過研究作為引發劑作用濃度MeGC水凝膠的凝膠時間(Fig 2a)可知,MeGC的凝膠時間迅速從90s降低到12s同時核黃素(RF)的濃度也從1.5增長至24 μM。在1.5 μM濃度的核黃素下加入HA能顯著的將凝膠時間從90s降至45s。當RF的濃度增加到24μM時MeGC/HA復合水凝膠的凝膠時間進一步降低到11s。
研究者在冷凍狀態研究了凝膠的內部形態(Fig 2b)。MeGC橫截面的SEM圖像顯示了一個孔徑大小在200~300μM的多孔微結構。而MeGC/HA復合水凝膠展示了更緊密的網絡結構且其孔徑大小在100~150μM,表明復合水凝膠具有更高的交聯密度。用阿爾辛藍染色觀察未長細胞的復合水凝膠中HA的結合情況及其隨時間的穩定性(Fig 2c),以沒有HA的MeGC水凝膠作為對照組。結果表明交聯之后的凝膠中存在HA。
Fig. 2. (a) Gelation time of MeGC and MeGC/HA (HA, 350 kDa) solutions as a function of RF initiator concentration. (Insets) Images of MeGC solutions with RF before (sol) and after (gel) irradiation. Gelation time significantly ( ?? P < 0.01) decreased from 90 to 45 s with the addition of HA at 1.5 l M RF. There was no significant difference in gelation time between MeGC and MeGC/HA above 6 l M RF. (b) SEM images of MeGC and MeGC/HA (HA, 350 kDa) hydrogels. Hydrogels were prepared with6 l M RF and 300 s irradiation. Scale bar 300 l m. (c) Macroscopic images of MeGC and MeGC/HA (HA, 350 kDa) hydrogels stained with alcian blue after incubation in PBS at 37 ℃.
此外研究者對水凝膠的細胞毒性進行了測試。發現對于產生能夠細胞封裝和細胞培養的穩定凝膠需要蕞少40s的時間。在輻照時間是120~300s時細胞活性大約是87~90%,且在MeGC和MeGC/HA復合水凝膠中活性沒有明顯的不同。而當輻照時間延長到600s時會導致細胞活性的顯著降低(Fig 3)。
Fig. 3. (a) Live/dead fluorescent staining and (b) viability of encapsulated chondrocytes in MeGC and MeGC/HA (HA, 350 kDa) hydrogels polymerized for various irradiation times (120, 300, and 600 s). Original magnification 200?. Scale bar 100 l m. Two-way ANOVA F(2,12) = 3.89 and P = 0.14918 for interaction, F(2,12) = 3.89 and P = 0.00001 for irradiation time, F(2,12) = 3.89 and P = 0.61688 for HA addition. Tukey’s post hoc test confirmed that 600 s irradiation significantly reduced cell viabilities in MeGC and MeGC/HA ( ? P < 0.05).
研究者還對在不同輻照時間和引發劑濃度下對存在和不存在HA的水凝膠的機械強度進行測定。當輻照時間從40s增加到600s時,MeGC的壓縮模量顯著增加,從大約為0.7增加到11KPa且當引發劑的濃度從1.5增加到15μM時會導致MeGC水凝膠壓縮模量的顯著上升(Fig 4a,b)。當RF的濃度等于或小于6μM時,含有HA的水凝膠會有更好的機械性能。而當引發劑的濃度增加到6μM時并不會導致MeGC/HA復合水凝膠機械性能的顯著不同。
HA分子量對于水凝膠機械強度的影響通過使用低、中、高三種分子量的HA來表征,發現復合水凝膠的壓縮模量隨著HA分子量的增加而顯著增加(Fig4c)且接下來只對RF的濃度在6μM以及照射時間在300s時復合水凝膠進行了進一步的研究。
Fig. 4. (a) Mechanical properties of MeGC and MeGC/HA hydrogels polymerized for various irradiation times (40, 120, 300, and 600 s, 350 kDa HA, 6 l M RF): two-way ANOVA F(3,16) = 3.24, P = 0.00032 for interaction; F(3,16) = 3.24, P < 0.00001 for irradiation time; F(1,16) = 4.49, P = 0.00005 for HA addition. Tukey’s post hoc test,# P < 0.05 and ## P < 0.01, significantly higher than 40 s in the MeGC group; – P < 0.01,significantly higher than 40 s in the MeGC/HA group;/ P < 0.05 and ?? P < 0.01,significantly higher than the corresponding MeGC group. (b) Mechanical propertiesof MeGC and MeGC/HA hydrogels polymerized at various RF initiator concentra-tions (1.5, 3, 6, and 15 l M, 350 kDa HA, 300 s irradiation): two-way ANOVAF(3,16) = 3.24, P = 0.00961 for interaction; F(3,16) = 3.24, P < 0.00001 for RF con-centration; F(1,16) = 4.49, P = 0.00035 for HA addition. Tukey’s post hoc test:# P < 0.05 and ## P < 0.01, significantly higher than 1.5 l M in the MeGC group;– P < 0.01, significantly higher than 1.5 l M in the MeGC/HA group; ? P < 0.05 and?? P < 0.01, significantly higher than the corresponding MeGC. (c) Molecular weight of HA (75, 350, and 980 kDa, 6 l M RF, 300 s irradiation): one-way ANOVAF(3,8) = 4.07, P = 0.00041 for HA molecular weight. Tukey’s post hoc test:? P < 0.05?? P < 0.01, significantly higher than MeGC alone.
研究者對MeGC水凝膠隨時間的降解行為進行了測定(Fig 5)。由MeGC水凝膠的質量隨著時間的損失可以觀察到,在溶菌酶存在時,水凝膠的重量在42天的時候仍然是19%,而沒有溶菌酶組在孵化時觀察到有少量的質量損失。但復合水凝膠的重量在42天的時候仍然是50%且降解緩慢。
Fig. 5. In vitro degradation of MeGC and MeGC/HA (HA, 350 kDa) hydrogels after incubation in PBS in the presence or absence of lysozyme (10 mg ml ?1 ) at 37 ?C. Hydrogels were polymerized with 6 l M RF for an irradiation time of 300 s. Significant mass loss was observed in the presence of lysozyme (one-way ANOVA/ P < 0.05, ?? P < 0.01).
為更進一步觀察復合水凝膠在軟骨組織工程中的可行性,研究者將軟骨細胞封裝在各實驗組中且表征他們在長期培養過程中的細胞活性和增殖情況(Fig. 6a,b,c)。發現與純MeGC水凝膠相比,含有HA的水凝膠對細胞增殖數目有顯著的提高。
Fig. 6. (A) Live/dead fluorescent staining and (b) viability of encapsulated chondrocytes in MeGC and MeGC/HA (HA, 350 kDa) hydrogels after 1, 7, 14, and 21 days in culture,and (c) alamar blue assay showing proliferation of encapsulated chondrocytes cultured in hydrogels. Chondrocyte proliferation was significantly enhanced in the presence of HA (one-way ANOVA,/ P < 0.05, ?? P < 0.01). Hydrogels were polymerized with 6 l M RF for an irradiation time of 300 s. Alginate (Al) hydrogels were used as the standard for comparison. Original magnification 100?. Scale bar 200 lm.
H&E染色顯示封裝的軟骨細胞第壹天時在水凝膠中是作為個體細胞均勻分布的,在21天之后變成圓形且在MeGC/HA復合水凝膠中發現蕞高的細胞密度。由對比可知MeGC/HA復合水凝膠在缺陷處和細胞外基質周圍的細胞集群中有更強的陽性蕃紅染色和阿辛藍染色。因此含有HA的MeGC復合水凝膠為軟骨細胞提供了適宜的環境且保持了他們的形狀,是一種潛在的修復軟骨組織缺損的組織工程支架。
Fig. 7. Histological analysis of encapsulated chondrocytes in MeGC and MeGC/HA (HA, 350 kDa) hydrogels after 1 and 21 days culture. Polymerization was performed with 6 l M RF for an irradiation time of 300 s. Hydrogels were processed for (a) hematoxylin and eosin staining, (b) Safranin-O staining, (c) and alcian blue staining. Original magnification 200?. Scale bar 100 l m.
本研究由美國加州大學洛杉磯分校生物工程學系的Min Lee教授及其團隊完成,于2012年8月27日在線發表于Acta Biomaterialia。
好消息!小編有個好消息告訴大家!近期,小編為大家在全國各正規醫美機構爭取了20個名額,大家可以低折扣搶購玻尿酸~目前還有8個名額可享有呦!別猶豫啦,碰碰運氣~可以點擊“在線咨詢”,來進行名額預約~